1500 0

United States Patent 9 (11 Patent Number: 5,781,752
Moshovos et al. 1451 Date of Patent: Jul. 14, 1998
[54] TABLE BASED DATA SPECULATION 5,666,506 9/1997 Hesson €t al. .oveemeierriuesccsnnnes 395/392
CIRCUIT FOR PARALLEL PROCESSING
COMPUTER OTHER PUBLICATIONS
{75] Inventors: Andreas L Moshovos; Scott E. Gurinda Sohi et al.. Instruction Issue Logic for High—Per-
Breach; Terani N. Vijaykumar; formance Interruptable Pipelined Processors; ACM 1987.
Gurindar S. Sohi. all of Madison, Wis. PP 27-34.
[73] Assignee: Wisconsin Alumni Research Primary Examiner—Krisna Lim
Foundation. Madison, Wis. Antomey, Agent, or Firm—Quarles & Brady
[21] Appl. No.: 773,992 1571 ABSTRACT
1. A predictor circuit permits advanced execution of instruc-
22} Filed: Dec. 26, 1996 tions depending for their data on previous instructions by
[51] Int. CL° GO6F 9/38 predicting such dependencies based on previous mis-
[52] US.CL .. 305/392 speculations detected at the final stages of processing. Syn-
[58] Field OF SArch oeemoecceccereereeeieese oo seecasis 395/392 chronization of dependent instructions is provided by a table
creating entries for each instance of potential dependency.
[56] References Cited Table entries are created and deleted dynamically to limit

total memory requirements.
U.S. PATENT DOCUMENTS

5,664,138 9/1997 YOShida ..coveerececremrecrrescereereees 395/395 9 Claims, 7 Drawing Sheets

40 66

INSTRUCTION FROM
RETIREMENT CIRCUIT

242

WILL
THIS BE A
DATA SPECULATIVE
LOAD

IS THIS
A SQUASH REQUEST

HANDLE | 70
READY TO LOAD

72
NO

A STORE OR A

6 ves 80
WAIT UNTIL ANY OF THE
[ISSUE STORE REQUEST FOLLOWING EVENTS OCCURS:

(D) WAKE UP

CONSUMER NO LONGER
DATA SPECULATIVE

52

MIS-SPECULATIO (3)SQUASHED
?
82 >
YES YES
ST 7\JissUE LoAD
HANDLE REQUEST
MIS-SPECULATION o 65 7
84
64 WAIT UNTIL ANY
) N PARREN| e ooES| | OF THE FoLLOWING
60 S , EVENTS OCCURS:
THERE A 0 (1) SQUASHED
SUBSEQUENT LOAD (@toap No
THAT HAS NOT BEEN 68 LONGER DATA
SQUASHED \} HANDLE SPECULATIVE
LOAD
86 ¥
82 ["squasH N ISSUE
LOAD LOAD (4

l REQUEST

HANDLE
SQUASH

Y

U.S. Patent Jul. 14, 1998 Sheet 1 of 7 5,781,752

10
14 12 N\ 20
CA d 12
XX1 22 | ALLOCATION L
XXz PROCESSING
XX3
N} — N i
XX5
e 24
o 3 ¥ [
35—~7"1 PREDICTOR PROCESSING
19 ™ ; UNIT
1_2_)_— 3077 oatA 21
- ~ 98 | |SPECULATION L
Y PROCESSING | ¢,
<5__| RETIREMENT UNIT
26 —
——
\ /
g
FIG. 1
18 '\‘ S
N N \
— e\ D Aam \3
FOR i=0,i<N, i+ + xx9.1] MUL 19
Ali+1)=Ali]*19 xx10.1/ ST Al2] 36
L .
/S o/
Q XX8.2,/ LD Al2
X902/ MUL19 / 38
s & X102/ ST Al3] (——5
xxs| LD Afil ;
xxo| MUL 19 a 83\ LD A3
XX10{ ST Afli+1] 9.3\ __MUL19 \
: xx10.3__ST Al4l "\
— \\ \‘
A) ‘
12 32
\ _/

FIG. 2

U.S. Patent

Jul. 14, 1998

Sheet 2 of 7

5,781,752

STRUCTION FROM

lQETIREMENT CIRCUIT)

242

IS THIS
A SQUASH REQUEST

IS THIS
A STORE OR A

LOAD
?

50\

YES

ISSUE STORE REQUEST

52

MIS-SPECULATION
7

_NO

WILL

LOAD

THIS BE A
DATA SPECULATIVE

66

HANDLE
READY TO LOAD

/70

72
NO

ves 80

WAIT UNTIL ANY OF THE
FOLLOWING EVENTS OCCURS:

(D) WAKE UP

CONSUMER NO LONGER
DATA SPECULATIVE

SQUASHED

S
—_—
74 Y
57~ \J ISSUE LOAD
HANDLE REQUEST
MIS-SPECULATION 76 3 ¥
¥
64 WAIT UNTIL ANY
HA
\ STNO%LEE OF THE FOLLOWING
€0 o EVENTS OCCURS:
THERE A (1) SQUASHED
SUBSEQUENT L0AD N0 (@ LoAD NO
THAT HAS NOT BEEN 68+, LONGER DATA
SQUASHED HANDLE SPECULATIVE
2 LOAD
YES 86]
82~ [sauash \[IsSUE
LOAD LOAD 46
REQUEST [
HANDLE
¢ SQUASH

U.S. Patent Jul. 14, 1998 Sheet 3 of 7 5,781,752

HANDLE READY TO LOAD |—~—70

IS

LOAD IN

THE PRED. TABLE
?

100
NO

FIG. 4

104

IS

SYNCHRONIZATION

REQUIRED
?

SYNC.

TABLE ENTRY

EXISTS FOR THE

PARTICULAR LOAD /STORE

PAIR AND W /THE GIVEN

DATA ADDRESS
?

106

NO

108
.
SELECT A SYNC. TABLE ENTRY

@ 110

—FILL IN STORE & LOAD
INSTRUCTION ADDRESSES

—FILL IN THE DATA ADDRESS
ACCESSED BY THE CONSUMER

120 —FILL IN LOAD ID
UPDATE THE —SET SYNC. FLAG TO @
PREDICTION
TOWARDS "DO NOT ‘L '
SYNCHRONIZE WAT=1 |16
¥ 122

FREE SYNC. TABLE ENTRY /

ﬁ

war=o 102
Y Y

DONE

U.S. Patent

Jul. 14, 1998

Sheet 4 of 7

5,781,752

PREDICTION TABLE SYNCHRONIZATION TABLE
LD 8 ST 10 1
‘ S109
/
\Y4
PREDICTION TABLE SYNCHRONIZATION TABLE
LD 8 ST 10 1 LD 8[XX]{ ST 10 0. XX
— s B L —
109 112 114
v /
PREDICTION TABLE SYNCHRONIZATION TABLE
LD 8 ST 10 1 LD ST [XX] 1 XX
A A(‘ 1 \ \ J(—‘—'
109 Sogg 112 210

/

U.S. Patent

64\

204

214
A\

Jul. 14, 1998

HANDLE STORE

201

IS

STORE

IN THE PREDICTION

TABLE
?

202

1S

SYNCHRONIZATION

REQUIRED
?

SYNC.

TABLE ENTRY

EXISTS FOR THE

LOAD /STORE PAIR AND

W /THE SAME

DATA ADDR.
?

212

IS

THE SYNC. YES

Sheet 5 of 7

5,781,752

FIG. 7

NO

206

y [

SELECT A SYNC. TABLE ENTRY

-1

FLAG OF THE

ENTRY 1
?

UPDATE PREDICTION
TOWARDS "SYNCHRONIZE"

216

N Y

WAKE UP LOAD

Y

218
\

FREE SYNC. TABLE ENTRY

208

Y ¢

—FILL IN STORE & LOAD
INSTRUCTION ADDRESSES

—FILL IN THE DATA ADDRESS
ACCESSED BY THE STORE

— SET THE SYNC. FLAG TO 1
—FILL IN STORE ID

91<

DONE

U.S. Patent Jul. 14, 1998 Sheet 6 of 7 5,781,752

HANDLE MIS-SPECULATION -—— 56

301 FIG. 9

IS THERE

YES _~"A PRED. TABLE ENTRY
FOR THIS LOAD /STORE
PAIR
308
VL~
~ UPDATE ENTRY'S PREDICTOR
REPLACE=1 TOWARDS "DO NOT SYNCHRONIZE”
S 3 309
THERE A IS THE
PRED. TABLE YES| o PREDICTOR
ENTRY FOR THE BELOW THE REPLACE
LOAD LIMIT
! 312 !
NO / Vs 310
REPLACE=0
FREE PRED. TABLE ENTRY
REPLACE=1
IS 314 316
THERE A Vil
PRED. TABLE YES UPDATE ENTRY'S PREDICTOR
ENTRY FOR THE TOWARDS "DO NOT SYNCHRONIZE”
STORE
?
; 318
302 NO IS THE
Y -~ NO PREDICTOR
UPDATE DATE 302 BELOW THE REPLACE
PREDICTOR \ LIMIT
TOWARDS «————| REPLACE=0
"SYNCHRONIZE” 320
FREE PRED. TABLE ENTRY
. REPLACE=1
/326
ALLOCATE A PREDICTION TABLE ENTRY |
J, 328
-FILL IN THE ADDRESSES OF THE LOAD AND STORE

-SET PREDICTOR TO THE DEFAULT VALUE

U.S. Patent Jul. 14, 1998 Sheet 7 of 7 5,781,752

HANDLE LOAD |~ 68

FIG. 10

402

IS
THERE A
SYNC. TABLE ENTRY
FOR THIS LOAD

(LOAD ID)
?

404
FREE THAT ENTRY

406

IS
THERE A
PREDICTION TABLE
ENTRY FOR THIS
LOAD

?
YES f 408

UPDATE PREDICTOR
TOWARDS "DO NOT
SYNCHRONIZE"

»l

DONE

HANDLE SQUASH }~46

FIG. 11

502

IS
THERE A
SYNC. TABLE ENTRY
FOR THIS INST.

504
/[
FREE SYNC. TABLE ENTRY

)‘L

DONE

5.781.752

1

TABLE BASED DATA SPECULATION
CIRCUIT FOR PARALLEL PROCESSING
COMPUTER

This invention was made with United States government
support awarded by the following agencies:

ARPA Grant No. DABT63-95-C-0127;
ONR. Grant No. N00014-93-1-0465; and

NSF. Grant Nos.: CCR-9303030 and MIP-9505853.
The United States has certain rights in this invention.

FIELD OF THE INVENTION

The invention relates generally to architectures of elec-
tronic computers and specifically to electronic computers for
parallel processing.

BACKGROUND OF THE INVENTION

General Computer Architecture and Instruction
Level Parallel (ILP) Processing

In an electronic computer with a single processing unit.
the processing unit may communicate with a memory hold-
ing the data and program instructions. The processing unit
may also hold data in internal registers. The program
instructions are executed by the processing unit which
operates on the data according to the instructions.

Typically, the processing unit repeats a series of fetch/
execute cycles in which each instruction is first fetched from
memory and then executed. The order in which the instruc-
tions are executed is determined by the value of a program
counter within the processing unit. After each execution of
an instruction. the program counter normally increases in
value by one so that the next instruction memory is fetched.
The order of the instructions in the stored program will be
termed “memory order”.

Some instructions. when executed. cause data to be
loaded into the processing unit from memory or stored from
the processing unit to memory. Other instructions may
perform their operation on data that are stored in registers
without loading or storing data from or to memory. Still
other instructions change the value of the program counter
permitting the processing unit to jump or branch through the
program instructions according to a “program order” that
normally differs from the memory order. The branch or
jumps in a program may be conditional on values of data
used by the program that may change as the program is
executed.

One method of increasing the speed of electronic com-
puters involves using multiple processing and/or functional
units to execute multiple instructions at the same time or in
an “execution order” differing from the program order.
Computers using this technique are termed “parallel pro-
cessing units”. An instruction level parallel (“ILP processing
unit”) is ome where individual instructions of a single
program are separated to be run on different processing units
in contrast to systems in which independent programs may
be assigned different processing units. for example.

Control and Data Dependencies

There are two types of dependencies exhibited by instruc-
tions. “Control dependency” is a dependency of instructions
after a conditional branch or jump instruction on whether the
branch or jump was taken. For example, instructions imme-
diately after a branch are properly executed only if the
branch is not taken. “Data dependency” is a dependency of

10

15

20

25

30

35

45

50

55

65

2

instructions that use data on earlier instructions that change
the data. These latter instructions may correctly execute only
if the earlier instructions using the same data do not change
the common data or have completed the change of the
common data. A dependency is “unambiguous” if it neces-
sarily produces an error when the dependent instruction is
executed before the instruction on which it is dependent. The
dependence of an instruction may remain ambiguous until
both instructions involved are executed. A dependency
between two instructions is ambiguous if it cannot be
determined whether a dependency really exists without
executing the instructions.

Usually, instructions that are data dependent must be
executed in the program order.

Control and Data Speculation

Since dependencies are often ambiguous, as the ILP
processing unit prepares to execute an instruction, it cannot
always determine if the instruction will in fact be dependent

.on earlier instructions that have not yet completed their

execution. In the case of ambiguous dependencies and
unless special circuitry is provided as will be explained in
the next paragraph, the ILP processing unit is forced to
assume dependencies exist.

However, it is quite often the case that an ambiguous
dependency is resolved as no dependency at all. For this
reason, some ILP processors may provide for “speculation”,
that is, execution of am instruction that has ambiguous
dependency as if it had no dependency at all. One may
speculate on control dependencies and on data dependen-
cies. Control speculation. for example, might involve
executing an instruction that follows a branch instruction
without knowing the outcome of the branch (and thus
whether the following instruction should have been executed
or was branched around). Data speculation, for example.
might involve reading from memory to obtain data for a later
instruction, even though there are earlier STORES to that
memory location that have not yet been completed and that
may change the value of the memory location.

Squashing

Control and data dependencies are important in an ILP
processing unit which. in the course of execution of
instructions, may execute some dependent instructions
before the instructions on which they are dependent. If the
dependency is unambiguous, then the results of the prema-
turely executed dependent instructions must be discarded
(“squashed™) and the instructions of the correct branch
executed.

Squashing instructions is a time consuming process that to
some extent defeats the advantages to be gained from
parallel processing. In order to avoid the problems associ-
ated with unambiguous dependencies. it is necessary that
when the ILP processing unit speculates, that it is mostly
correct.

Speculation in an ILP Processor

In an ILP processor, the processor may fetch multiple
instructions at a single time and an allocation circuit allo-
cates those instructions to separate processing units. The
separate processing units may read data from memory and
perform arithmetic or logical operations on that data. A data
speculation circuit may exist to detect data dependencies and
report any mis-speculation to a retirement circuit. The
retirement circuit collects results generated by the indepen-

5,781,752

3

dent processing units and “retires” the instructions executed
by those processing units by writing final results to memory.
The retirement circuitry also resolves mis-speculation
detected by the data speculation circuit, that is, instructions
that were executed out of program order but were in fact
dependent on an earlier instruction in the execution order
and have produced an erroneous result. These instructions
are squashed as is understood in the art. Data speculation
circuitry currently does not decide when to do data specu-
lation. Either all memory accesses are speculated or none at
all.

For either type of speculation to be successful (control or
data speculation). the performance cost associated with the
speculation must be low. The performance cost is a function
of the frequency that speculation is required. the time
required to perform the speculation. the probability of mis-
speculation and the time required to recover from a mis-
speculation. A cumbersome or inaccurate speculation system
may hurt overall system performance. especially when many
dependencies must be evaluated.

Because the ILP processing is relevant primarily for high
speed processing units, the speculation process must be
implemented in circuitry rather than software. The process
of speculation must be capable of rapid execution using
limited amounts of high speed memory.

Control speculation is well understood in the art. The
points were control speculation is needed are clearly iden-
tified by conditional branch and jump instructions (we will
refer to these instructions as *“control transfer instructions™).
Typically all control transfer instructions are speculated
since: (1) control transfer instructions are relatively
frequent, (2) relatively few instructions from those that
appear between two consecutive control transfer instructions
can be executed in parallel. (3) typically the performance of
a processor that always mis-speculates on control is virtually
the same as the performance of a processor that never
speculates on control.

In contrast the points where data speculation is needed are
not clear since any instruction loading data from memory
can be data dependent on any previous instructions that
writes to memory. Consequently , predicting and tracking
data dependencies, “data dependence speculation” can eas-
ily become overwhelming. Furthermore, the cost of a data
mis-speculation typically cannot be neglected. that is the
performance of a processor that always mis-speculates on
data dependencies is far less than that of a processor that
never speculates on data.

BRIEF SUMMARY OF THE INVENTION

The present inventors have recognized that most data
dependence mis-speculations can be attributed to a few
static STORE/LOAD instruction pairs. Furthermore, these
instruction pairs exhibit “temporal locality” that is. if one
LOAD/STORE pair causes a data mis-speculation at a given
point in time, it is highly likely that a later instance of the
same pair will soon cause another mis-speculation. For this
reason, a table based approach may be used in which data
dependent instructions likely to be a source of mis-
speculation, are stored in a small. high speed memory. These
particular instruction pairs can be identified based on pre-
vious mis-speculations.

Very low overhead in a table based data dependence
speculation is obtained by a three-tiered approach. If there is
no history of data mis-speculation. an instruction is executed
without further inquiry. This will be the case for most data
independent instructions. If there has been a mis-speculation

10

15

20

25

30

35

45

56

55

65

4

with a given LOAD instruction. a predictor based on the past
history of mis-speculations for that LOAD instruction is
employed to determine whether the instruction should be
executed or delayed. Thus. instructions that are typically not
dependent may be executed immediately. If the instruction
is to be delayed, a synchronization table is used to determine
when the instruction is to be performed.

Specifically. the present invention provides a speculation
decision circuit for use in a processor capable of executing
program instructions in an execution order differing from the
program order of the instructions. the processing unit further
having a data speculation circuit for detecting data depen-
dence between instructions and detecting a mis-speculation
where a data consuming instruction dependent for its data on
a data producing instruction of earlier program order is, in
fact, executed before the data consuming instruction. The
speculation decision circuit includes a predictor circuit
receiving the mis-speculation signal from the data specula-
tion circuit to produce a prediction associated with the
particular data producing/consuming instruction pair and
based on the mis-speculation indication. A prediction thresh-
old detector prevents data speculation for instructions hav-
ing a prediction value within a predetermined range. This
prediction threshold detector may include an instruction
synchronizing circuit instructing a processing unit to delay
a later execution of the particular data consuming instruction
until after the execution of the particular data producing
instruction when the prediction associated with the data
producing/consuming instruction pair is within a predeter-
mined range.

Thus, it is one object of the invention to provide a
predictor circuit that may identify data dependencies on an
on-going or dynamic basis. Recognizing that there are
relatively few instructions which will cause data mis-
speculations, these instructions are identified by reference to
historical mis-speculation associated with the instructions as
stored in a prediction.

The instruction synchronization circuit may include a
prediction table listing certain data consuming instructions
and certain data producing instructions each associated with
a prediction. The instruction synchronization circuit will
delay the particular data consuming instruction only when
the prediction associated with the data consuming instruc-
tion is within a predetermined range of predictions and when
the particular data consuming instruction is in the prediction
table.

Thus, it is another object of the invention to provide a
prediction of data dependence which adds very little over-
head to the execution of instructions that historically have
not resulted in mis-speculation. If the particular data con-
suming instruction is not in the prediction table. no further
inquiry into the prediction table is required.

The instruction synchronization circuit may also include
a synchronization table associating certain data consuming
instructions and certain data producing instructions. each
with a flag indicating whether the respective data producing
instruction has been executed. The instruction synchroniza-
tion circuit delays the subsequent instances of the certain
data consuming instruction only when the prediction asso-
ciated with the data consuming instruction is within a
predetermined range and when the particular data consum-
ing instruction is in the prediction table and when the flag
indicates that particular data producing instruction has not
been executed.

Thus, it is another object of the invention to provide
reduced instruction overhead even for instructions that have

5.781,752

5

a history of mis-speculation when it is unlikely that. in the
given instance, mis-speculation will occur. If the prediction
indicates that mis-speculation is unlikely. no further syn-
chronization steps need be taken.

It is yet another object of the invention to allow data
consuming instructions that are historically dependent on
preceding data producing instructions to be executed rapidly
if the preceding data producing instruction has already been
executed. Thus, if the flag indicates that the data producing
instruction has been executed. the data consuming instruc-
tion may be immediately executed without further waiting,

The predictor circuit may create an entry in this synchro-
nization table only after mis-speculation has occurred for a
previous instance of the particular data consuming instruc-
tion and particular data producing instruction of the entry.
After synchronization has occurred, this entry may be
removed.

Thus, it is another object of the invention to provide a
predictor circuit that minimizes the need for storage. Syn-
chronizing table entries. which may be more numerous than
the prediction table entries as a result of possible multiple
instances of each instruction. have entries in the synchroni-
zation table that are dynamically created and released to
minimize storage requirements. This also minimizes search
overhead in identifying instructions within this table.

The foregoing and other objects and advantages of the
invention will appear from the following description. In this
description, references made to the accompanying drawings
which form a part hereof and in which there is shown by way
of illustration a preferred embodiment of the invention. Such
embodiment does not necessarily represent the full scope of
the invention, however. and reference must be made there-
fore to the claims for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram showing the architecture of an
instruction level parallel processor having multiple process-
ing units, an allocation unit allocating instructions of a
program in memory to the processing units, and a retirement
unit retiring the paraliel processed instructions, the latter
unit incorporating the predictor circuit of the present inven-
tion;

FIG. 2 is a fragmentary listing of a source code program
and its corresponding object code instructions stored in
memory order at physical addresses in memory and as
unwound in program order producing multiple instances of
each object code instruction in execution;

FIG. 3 is a flow chart of the operation of a typical data
speculation circuit of the processor of FIG. 1 as modified to
work with the predictor circuit of the present invention to
provide READY TO LOAD. HANDLE STORE, HANDLE
MIS-SPECULATION. HANDLE LOAD. and HANDLE
SQUASH messages to the predictor circuit of the present
invention;

FIG. 4 is a flow chart showing the steps performed by the
predictor circuit of FIG. 1 upon receiving a READY TO
LOAD message from the data speculation circuit;

FIG. § is fragmentary view of prediction and synchroni-
zation tables used by the predictor circuit of FIG. 1;

FIG. 6 is a figure similar to that of FIG. 5 showing the
prediction and synchronization tables at a later point in the
operation of the predictor circuit;

FIG. 7 is a flow chart showing the steps performed by the
predictor circuit of FIG. 1 upon receiving a HANDLE
STORE message from the data speculation circuit;

10

15

20

25

30

35

45

50

55

65

6

FIG. 8 is a figure similar to that of FIGS. 5 and 6 showing
the prediction and synchronization tables at yet a later point;

FIG. 9 is a flow chart showing the steps performed by the
predictor circuit of FIG. 1 upon receiving a HANDLE
MIS-SPECULATION message from the data speculation
circuit;

FIG. 10 is a flow chart showing the steps performed by the
predictor circuit of FIG. 1 upon receiving a HANDLE
LOAD message from the data speculation circuit; and

FIG. 11 is a flow chart showing the steps performed by the
predictor circuit of FIG. 1 upon receiving a HANDLE
SQUASH message from the data speculation circuit.

DETAILED DESCRIPTION OF THE
INVENTION

An Example Program with Data Dependency Referring
now to the following Table I, an example object code
program may have three instructions: I1, I2 and I3.

TABLE 1
st M(R,)

1d M(R,)
1d M(R;)

Il
2
3

These instructions provide for a storage of data from a
processor to a memory location and the loading of data from
the memory location to the processor.

The first instruction Il stores data from a processor
register (implied in the instruction) to memory at a specific
address determined by the contents of register R, of the
processing unit. Generally. the contents of register R, will
have been set by an earlier instruction and cannot be
deduced simply by looking at instruction I1.

The following instructions I2 and I3 each load data from
a specific physical address of memory to the processor
register. Again, the registers R, and R; have been set by
earlier instructions and the relevant addresses cannot be
determined from these instructions alone.

If a parallel processor were to load the three instructions
1113 for parallel processing, there would be two possible
data dependencies. I2 may be dependent on I1 insofar that
the contents of register R, and R, may be the same and
therefore the information stored in M(R,) may be the same
that is loaded from memory location M(R,). For instruction
12 to be executed correctly. it may be necessary that instruc-
tion I2 wait for instruction I1. Likewise, instruction I3 may
be dependent on instruction I1. That is. the address M(R;)
may be the same as the physical address M(R,).

Each of these dependencies is ambiguous. That is. it
cannot be determined whether there is in fact a dependency
without knowing the contents of registers R1, R2 and R3
which cannot be deduced from the instructions alone.

In a parallel processor that seeks to load blocks of
instructions and execute them in parallel, possibly out of
their memory or program order. it is important to identify
and address ambiguous data dependencies to eliminate mis-
speculation and time consuming instruction squashing.

General Processor Architecture

Referring now to FIG. 1, an ILP processor 10 suitable for
use with the present invention includes a memory 12 having
a portion 14 holding a stored program 16 at a plurality of
physical addresses 19 here depicted as xx1-xx6 where the
values xx indicate some higher ordered address bits that may
be ignored in this example.

5.781.752

7

The data speculation circuit 30 receives signals from the
allocation circuit 20 that notify it of the program order of any
instructions that are allocated to the processing units 24 and
that will access memory. The data speculation circuit is
responsible of keeping track of order of the memory opera-
tions as they are performed by the processing units so that
it can detect any mis-speculations.

The ILP processor 10 includes an allocation circuit 20
which may read memory 12 and in particular program
memory portion 14 to fetch a subset of the program 16
encompassing multiple instructions of an instruction win-
dow 22. Generally. as is understood in the art, the allocation
circuit 20 sends different ones of these instructions to
different independent processing units 24 for execution.

The processing units 24 may communicate with memory
12 for the purpose of obtaining data, but generally do not
modify portions of the memory 12 that may be also read by
other processing units 24. Thus, for example. an instruction
which requires data to be obtained from memory 12 and
added to a constant may be completely executed. However,
an instruction, which stores a register to memory 12. may
read the register but stop before the store operation which
may modify memory 12 used by other processing units 24.
An instruction that has been executed as far as possible is
considered “ready to commit the operation”. Prior to reading
data from memory or requesting a store operation the
processing units 24 notify the data speculation unit 30 of the
operation so that the latter can. in conjunction with the
allocation unit, keep track of the program and execution
order of the operations.

A retirement circuit 26 receives signals from the process-
ing units 24 indicating that their instructions are ready to
perform the operation. The retirement circuit 26 then retires
the instructions by writing any computed values to memory
12.

Prior to the retirement circuit 26 writing values to
memory. a data speculation circuit 30 communicating with
the allocation circuit 20 and the retirement circuit 26 detects
mis-speculation. As described above, mis-speculation
occurs in an instruction that has been executed prematurely
and erroneously. Whenever a store instruction is ready to
commit and write its data to a memory address, the data
speculation circuit 30, checks to see if any subsequent in the
instruction window load instructions have accessed the same
memory address, and if so instructs the allocation circuit 20
and retirement circuit 26 that these load instructions are to
be squashed and re-allocated by the allocation circuit 20 at
a later time. Thus, for example, in the program Table L if
instructions I1 through I3 represent the instruction window
22 and instruction I3 has accessed memory prior to Il
writing to memory. the data speculation circuit 30 and at the
time I1 is ready to commit checks if I3 has accessed the same
memory address as I1. and if so it instructions the allocation
circuit 20 and the retirement circuit 26 that I3 is to be
squashed and reallocated at a later time. If so, the data
speculation circuit 30 instructs the allocation circuit and
retirement circuit 26 that instruction I3 is to be squashed and
must be reallocated by the allocation circuit 20 at a later
time. The writing of results from instructions that have not
been squashed is then done by the retirement circuit 26 as
indicated by arrow 28.

The retirement circuit 26, the data speculation circuit 30,
and the allocation circuit 20 communicate by a number of
control signals 35. Each of these elements described above
are well known in the art.

The data speculation circuit 30 also communicates with
the predictor circuit 33 of the present invention. The pre-

10

15

20

25

30

35

45

50

55

65

8

dictor circuit 33 provides a dynamic indication to the data
speculation circuit 30 as to whether data speculation should
be performed. The data specnlation circuit 30 may then,
based on the indication of the predictor circuit 33 stall the
execution of a memory operation at the processing units 24
in order to avoid mis-speculation.

The prediction provided by the predictor circuit 33, as will
be described, is updated based on historical mis-speculations
detected by the data speculation circuit 30. For this reason.
the data speculation circuit 30 must communicate with the
predictor circuit 33 on an ongoing basis. Generally, as will
be described below. the data speculation circuit 30 provides
five signals to the predictor circuit 33 as listed in the
following Table II.

TABLE I

Signal Name Description

HANDLE MIS-SPECULATION The data speculation circuit has
detected a mis-speculation.

The data speculation circuit has
decided to issue a STORE operation.
The data speculation circuit is

about to perform z speculative LOAD
operation and needs information
from the predictor as to whether

the LOAD should wait.

The data speculation circuit has
decided to perform a non-
speculative LOAD operation without
data dependency.

The data speculation circuit has
issued a squash for a particular
instruction either as the result of
data or control mis-speculation.

HANDLE STORE

READY TO LOAD

HANDLE LOAD

HANDLE SQUASH

Generally, prior to each instruction being retired. the
instruction is provided to the data speculation circuit 30
which detects mis-speculations. The retirement circuit 26
also instructs the data speculation circuit 30 when a squash
instruction is required.

Referring to FIG. 2, an example source code program 18
includes two lines as follows:

for =0, i<N, i++
Ali+1}=Ali1M19

These instructions represent typical source code instruc-
tions 18 which may create a data dependence speculation
problem. The source code instructions 18 describe a loop
executed N times in which each element of an array variable
A(i) receives a value of 19 times that of its preceding array
value.

The source code instructions 18, when reduced to
machine language instructions 32, involve repeated LOAD
and STORE operations. That is, to realize the second line of
the source code instructions 18. the memory value of the
array clement Afi] must be: (1) loaded, (2) multiplied by 19.
and (3) stored in memory location for array element Afi+1].
The LOAD and STORE instructions of the machine lan-
guage instructions 32 have logical addresses within the
memory 12 of xx8 and xx10, respectively, which may be
used to identify the instructions uniquely.

As the machine language instructions 32 execute in a
loop. they create an execution thread 34 of successive
LOAD and STORE operations in which the variable ‘i’ is
incremented from 0 to N. This execution thread 34 produces
multiple instances of the LOAD and STORE instructions.
For illustration purposes. each instance may be uniquely

5.781.752

9

identified and is designated in FIG. 2 by an integer to the
right of a decimal point forming a suffix to the physical
address of the operation. Thus, the first instance of the
LOAD instruction of the execution thread 34 is designated
8.1. the physical address of the LOAD instruction being 8
and the instance being 1. Likewise, the first STORE instruc-
tion is designated 10.1 and so forth.

The LOAD instruction 8.1 loads the contents of memory
location A[1]. The STORE instruction 10.1 then stores a
value in memory location A{2]. The LOAD instruction 8.2
then loads a value from the same memory location A[2].
This LOAD instruction 8.2 is thus unambiguously depen-
dent on instruction 10.1. the data dependency 36 as indicated
by an arrow. If instruction 8.2 were to be executed prior to
instruction 10.1, it would operating on erroneous data.

Likewise. the LOAD instruction 8.3 which loads data
from memory location A|3] is dependent on the STORE
instruction 10.2 which stores data in that same memory
location. This unambiguous dependence 38 is indicated by
an arrow.

If the ILP processor 10 is to process the machine code
instructions out of execution order. the data dependencies 36
and 38 must be observed to ensure that the out of order
processing instruction 8.2 does not execute before instruc-
tion 10.1 and instruction 8.3 does not execute prior to
instruction 10.2.

The circuitry necessary to construct an ILP processor will
typically involve many millions of transistors. however. its
operation can be described by means of a description of a
flow chart and the data structures modified during the steps
described. Implementing the device described below in
discrete circuitry, although laborious, is a routine engineer-
ing matter whose practice will be well understood to those
of ordinary skill in the art. Generally the data structures
described below will be implemented in solid state memo-
ries and the steps of the flow chart will be incorporated into
a state machine of a type well understood in the art.

Operation of the Data Speculation Circuit

Referring now to FIG. 3. the normal operation of the data
speculation circuit 30 such as is known in the prior art, must
be modified slightly to accommodate the present invention.
These modifications provide the necessary signals referred
to in Table 2 to the predictor circuit 33.

Starting at process block 40 of FIG. 3. a program instruc-
tion may be received from the retirement circuit 26 by the
data speculation circuit 30 together with an indication that
the instruction should be either squashed or is about to
execute. At decision block 42, if the instruction is to be
squashed, the data speculation circuit 30 provides a
HANDLE SQUASH signal to the predictor circuit 33 as
indicated by process block 46. Otherwise, the program
proceeds to process block 48 which determines whether the
instruction. which must be then assumed to be ready to issue
is a LOAD or STORE instruction.

If the instruction is a STORE instruction, the program
proceeds to process block 50 and a STORE request is issued.
This STORE request may. for example, authorize the retire-
ment circuit 26 to perform the STORE operation for the data.

At decision block 52, the data speculation circuit 30
checks other concurrent LOAD instructions to see if they
have been prematurely executed and thus whether there has
been a mis-speculation. At process block 57 if there has been
amis-speculation, a HANDLE MIS-SPECULATION signal
is sent to the predictor circuit 33. This signal is used by the
predictor circuit 33 in adjusting its prediction 109 as will be

10

15

20

25

30

35

45

50

55

65

10

described. The dependent instructions are then squashed by
the loop of decision block 60 and process block 62.

If at decision block 52 there was no mis-speculation, then
the data speculation circuit 30 sends a HANDLE STORE
signal to the predictor circuit 33 as indicated by process
block 64 as will be described below.

If at decision block 48 the instruction received by the data
speculation circuit 30 is a LOAD instruction. then at deci-
sion block 66 it is determined whether this is a data
speculative LOAD, that is whether there are prior STORE
instructions on which it might depend. If the answer is no,
then the data speculation circuit 3¢ provides a HANDLE
LOAD signal to the predictor circuit 33 as indicated by
process block 68 as will be described below. Otherwise, the
data speculation circuit 3@ provides a HANDLE READY
TO LOAD signal to the predictor circuit 33 as indicated by
process block 70 as will also be described below.

The predictor circuit 33 will address the READY TO
LOAD request from the data speculation circuit by making
a prediction as to whether the LOAD should take place
through the use of a wait flag. Thus. at subsequent decision
block 72 if the wait flag equals 1 indicating that speculation
should occur, the program proceeds immediately to process
block 74 and a LOAD request is generated.

Next at process block 76. the data speculation circuit 30
waits for that particular instruction. either to be squashed
indicating that it had been erroneously speculated or for an
indication that it is no longer data speculative. that is any
previous STORE instructions were for different memory
addresses. At decision block 78. if the condition of case
block 76 was that the instruction was squashed. the data
speculation circuit 30 proceeds to the handle squash block
46 as is previously described.

At decision block 72, the predictor circuit 33 may have
indicated that data speculation was not appropriate by pro-
viding that the wait flag equal 1. In this case, a LOAD
request is not issued but instead. at case block 80, the data
speculation circuit 30 waits for a wakeup signal indicating
that the dependent STORE instruction has been executed or
a signal indicating that the LOAD instruction is no longer
speculative because the earlier STORE instructions did not
write to its memory location or for a squash signal indicating
that the instruction should be squashed as a result of a later
occurring control or data dependency mis-speculation. At
decision block 82, if the condition of process block 80 was
that of being squashed. the program branches to the handle
squash process block 46. If not, then at decision block 84 if
the event was a wakeup signal. the program branches to
previously described process block 74 where the LOAD
request is issued. If the triggering event was that the LOAD
instruction is no longer data speculative, then at process
block 68, the HANDLE LOAD signal is provided by the
data speculation circuit 30 to the predictor circuit 33 and the
LOAD request is issued as indicated by process block 86.

Operation of the Predictor

1. Handle Ready to Load

Referring also to FIG. 1, after instructions of instruction
window 22 have been received by the allocation circuit 20
and allocated to the processing units 24. the processing units
24 will begin execution of the instructions and at various
times certain instructions will become ready for their opera-
tions to be performed and will be received by the retirement
circuit 26 and the data speculation circuit 30.

As an example, assume that instruction 8.2 in FIG. 2
becomes ready for its operation to be performed. Referring

5,781,752

1

now to FIG. 3. instruction 8.2 is a LOAD instruction and
thus will cause a HANDLE READY TO LOAD signal to be
passed to the predictor circuit 33. Referring to FIG. 4, at
decision block 100. the predictor circuit 33 reviews a
prediction table 44 shown generally in FIG. 5 to see if the
particular instruction 8.2 identified by its physical address.is
in the prediction table 44.

The prediction table 44 includes three elements for each
entry. the elements depicted as columns. the entries as rows.
The first column identifies, by physical address. an instruc-
tion that is ready for its operation to be performed; the
second column identifies the instruction on which the
instruction in the first column may be data dependent; and
the third column holds a prediction 109 as will be described.

For the purpose of this example. it will be assumed that
the prediction table 44 is initially empty. In this case at
decision block 100, the operation of the predictor circuit 33
is to set the wait flag equal to zero as indicated by process
block 102 and return that flag value to the data speculation
circuit 30 as has been described. Generally, the prediction
table 44 has an entry if there has been a historical pattern of
mis-speculation and thus at least ome mis-speculation.
Accordingly, if no entry is found in the prediction table 44,
the reasonable assumption is that speculation can proceed.
How the prediction table 44 is loaded will be described
below.

If there is an entry in the prediction table 44 at decision
block 104, then the prediction 109 of the prediction table 44
is examined to see if it indicates that it is likely there is data
dependence of this instruction. The higher the prediction
109, the more likelihood of mis-speculation if the instruction
of the first column is executed before the instruction of the
second column. Normally the prediction 109 starts at zero
when an entry is first made in the prediction table 44 and is
incremented and decremented as will be described below. At
decision block 104, if synchronization is not required as
indicated by the prediction 109. the program proceeds to
process block 102. On the other hand, if the prediction 109
indicates that there is a likelihood of mis-speculation, the
program proceeds to process block 106 and a synchroniza-
tion table 56 is examined.

The synchronization table 56 is generally similar to the
prediction table 44 but whereas the prediction table 44
compiles a prediction statistic as to whether data dependence
exists between a LOAD/STORE pair, the synchronization
table 56 indicates whether there is in fact a pending LOAD
instruction awaiting its dependent STORE instruction.

Assuming that there is no entry in the synchronization
table 56 as shown in FIG. 5. then an entry must be added to
reflect the fact that there is a pending LOAD instruction that
must wait for its preceding STORE instruction. At process
block 108, a new row of the table is selected and at process
block 118 an entry is created. In this creation of an entry, the
STORE instruction address is filled in as indicated in FIG.
6. The address of the LOAD instruction is also stored. A
synchronization flag 112 is set equal to zero indicating that
the STORE instruction with which this LOAD instruction
must be synchronized has not occurred and a LOAD iden-
tifier 114 is entered providing a unique number for this
instance of the LOAD instruction used for tracking the
instruction and generated arbitrarily with the only require-
ment that it be unique to this particular instruction.

At process block 116, the wait flag is set. This is the same
wait flag that is used by the data speculation circuit 30 as
shown in process block 72 of FIG. 1.

Referring again to decision block 186. if there is an entry
in the synchronization table 56 then the program proceeds to

25

45

50

55

65

12

decision block 118 where the synchronization table 56 is
checked to see if the synchronization flag 112 is equal to 1.
If so. the program branches to process block 102 and sets the
wait flag equal to zero which causes the data speculation
circuit 30 to go ahead and issue a LOAD request. This is a
situation where another instance of the LOAD instruction is
in fact waiting for the same predicate STORE instruction
and the decision is made simply to release the current LOAD
instruction.

On the other hand. at decision block 118, if the synchro-
nization flag 112 is set to 1. that indicates that the predicate
STORE instruction has already occurred and the LOAD
instruction may be released as no longer being data depen-
dent. In this case. the prediction that there was a need to
synchronize was wrong and so at process block 120 the
prediction 109 is decremented toward the do not synchro-
nize state. Finally, at process block 122 the entry of the
synchronization table 56 is erased as no longer needed so as
to preserve room in the synchronization table 56.

2. Handle Store

Referring now to FIG. 7, the initial stages of the
HANDLE STORE routine of process block 64 are similar to
that of the HANDLE READY TO LOAD. That is at a
process block 201. the prediction table 44 is checked to see
if the STORE instruction is in the prediction table 44. If not.
the program exits, but if so at decision block 202, the
prediction 109 is checked to see if synchronization is
required between this instruction and another LOAD
instruction. If not, again the program exits but if so. at
decision block 204 the synchronization table 56 is checked
to see if a previous dependent LOAD instruction is awaiting
execution. If not, at process block 206, a new entry is added
to the synchronization table 56 and at process block 208 that
new entry is loaded with the STORE and LOAD instruction
addresses, the data address 209 of the STORE instruction (as
indicated in FIG. 6), the synchronization flag 112 is set to 1,
and a STORE ID 210 identifying uniquely that STORE
instruction is added to the table. The program then exits
again, the STORE instruction having been executed.

At decision block 204, if a synchronization table entry is
present, then at decision block 212 the synchronization flag
112 is checked. If the synchronization flag is 1. indicating
that entry exists already indicating that a predicate STORE
instruction has been enrolled (but never claimed by a
dependent LOAD instruction), the program proceeds to
process block 208 and that entry is replaced with the data
from the present STORE instruction.

More typically, the synchronization flag 112 will be zero
indicating that there is a pending LOAD instruction. In this
case, the prediction 109 is updated toward the synchronize
condition indicating that the prediction that there was a need
to synchronize was correct as there is in fact a LOAD
instruction waiting to be synchronized.

The LOAD instruction is released at process block 216
and the entry in the synchronization table 56 is erased at
process block 218.

3. Handle Mis-Speculation

Referring now to FIG. 9. the predictor circuit 33 must also
make adjustments in its prediction table 44 if there is a
mis-speculation, an occurrence that provides considerable
information as to whether synchronization is required. At an
initial decision block 301, the prediction table 44 is checked
to see whether the LOAD/STORE pair causing the mis-
speculation is in the prediction table 44 already. If so then at

5,781,752

13
process block 302. the prediction 109 is updated toward
synchronize so that this mis-speculation may be avoided in
the future. If not, a ‘replace’ flag is set equal to 1 at process
block 304 and the program proceeds to decision block 306
and the prediction table 44 is again examined but this time
for an entry having only the LOAD instruction.

Such an entry indicates a possible lack of temporal
locality, that is, indicates that there are different instances of
the instructions having different data dependencies that can
make the prediction wrong. It is desired in this case to
neutralize these table entries, but slowly. as it cannot be
determined which particular instance represents the better
prediction. Accordingly at process block 308, the prediction
109 is moved toward the do not synchronize direction or
decremented and if it is below a limit as determined at
process block 309, the table entry is deleted at process block
310 and the value of the flag replace is set equal to 1.

In cases where the prediction 109 is still above the limit,
then the program proceeds to process block 312 and the
replace flag is set equal to zero. In all cases. the program next
proceeds to decision block 306 and a similar inquiry is made
for the STORE instruction. that is whether a prediction table
entry exists having only the STORE instruction. As with
process block 308 to 312, the same steps are taken to
eliminate possibly erroneous predictions. That is at process
block 316. the prediction 189 is moved toward the do not
synchronize value at decision block 318 if the prediction 109
is below a certain limit, the program proceeds to process
block 320 and the prediction table entry is erased and the
replace flag set equal to 1.

If the prediction 109 is not below the limit. then replace
is set equal to zero at process block 322 and the program
proceeds to decision block 324, the same destination being
arrived at from decision block 314 if there is no entry for
either the STORE or LOAD instructions at decision blocks
306 and 314.

At decision block 324, if the replace flag equals 1 indi-
cating that there are absolutely no prediction table entries
left that match either one of the instructions involved in this
mis-speculation, then at process block 326 a prediction table
entry is allocated and at process block 328 the addresses of
the LOAD and STORE instructions are inserted in the
prediction table 44 and the prediction 109 is set to the default
value, typically zero. If the value of the replace flag did not
equal the 1 indicating that there was an entry, no further
processing is needed.

4. Handle Load

Referring now to FIG. 10, the HANDLE LOAD routine
of process block 68 is relatively straightforward and first
examines, at decision block 402, whether there is a synchro-
nization table entry for this particular LOAD instruction
which has now been released for execution. i so at process
block 404 that entry is erased. Next at decision block 406,
prediction table 44 is examined for this particular LOAD
instruction. If there is an entry in the prediction table 44,
then the prediction 109 is decremented toward a do not
synchronize condition at process block 408.

5. Handle Squash

Referring now to FIG. 11. the predictor circuit 33 must
also receive the handle squash message of block 46 with
regard to updating the synchronization table 56. Specifically.
at a decision block 502, if there is a synchronization entry,
that synchronization entry is eliminated at process block
504.

10

15

20

25

30

35

45

50

55

65

14

As will be understood from this description. the predic-
tion 109 is used to determine the likelihood of a dependency
between two instructions in the future. The higher the
prediction 109 the more likelihood of mis-speculation if the
instruction in the first column is executed before the instruc-
tion in the second column. It will be understood that the
prediction 109 may be obtained by methods other than
simply incrementing it in value for each speculation as is
described herein. For example, various weighting schemes
can be provided to cause the predictor circuit 33, for
example. to be less sensitive to the earliest mis-speculations.
More complex pattern matching techniques may be also
used, for example, to catch situations where mis-
speculations occur in groups or regular patterns.

The present inventors believe that a relatively limited
number of LOAD/STORE pairs will create mis-speculation
and so the operation described above prevents the majority
of the LOAD/STORE pairs from being slowed in execution.
The list of critical LOAD/STORE pairs is prepared dynami-
cally in a synchronization method for those LOAD/STORE
pairs is created that can expand or shrink depending on the
operation of the program. It should be noted that the present
invention may be used in any processor where execution of
instructions deviates from the program order, for example,
processing units that during execution of time consuming
instructions may move to other instructions out of order to
begin their execution.

The above description has been that of a preferred
embodiment of the present invention. It will occur to those
that practice the art that many meodifications may be made
without departing from the spirit and scope of the invention.
In order to apprise the public of the various embodiments
that may fall within the scope of the invention, the following
claims are made:

We claim:

1. In a processor capable of executing program instruc-
tions in an execution order differing from their program
order. the processor further having a data speculation circuit
for detecting data dependence between instructions and
detecting a mis-speculation where a data consuming instruc-
tion dependent for its data on a data producing instruction of
carlier program order, is in fact executed before the data
producing instruction. a data speculation decision circuit
comprising:

a) a predictor receiving a mis-speculation indication from
the data speculation circuit to produce a prediction
associated with the particular data consuming instruc-
tion and based on the mis-speculation indication; and

b) a prediction threshold detector preventing data specu-
lation for instructions having a prediction within a
predetermined range.

2. The data speculation decision circuit of claim 1 wherein
the prediction threshold detector includes an instruction
synchronization circuit instructing the processor to delay a
later execution of the particular data consuming instruction
until after the particular data producing instruction when the
prediction associated with the data consuming instruction is
within the predetermined range.

3. The data speculation decision circuit of claim 2 wherein
the instruction synchronization circuit includes a prediction
table listing certain data consuming instructions and certain
data producing instructions each associated with a prediction
and wherein the instruction synchronization circuit delays
the particular data consuming instruction only:

i) when the prediction associated with the data consuming

instruction is within a predetermined range; and

5,781.752

15

ii) when the particular data consuming instruction is in the

prediction table.

4. The data speculation decision circuit of claim 3 wherein
the certain data consuming and data producing instructions
are identified in the prediction table only by the address of
the instructions in a program memory.

5. The data speculation decision circuit of claim 2 wherein
the instruction synchronization circuit includes a synchro-
nization table associating the certain data consuming
instructions and the certain data producing instructions each
with a flag value indicating whether the respective certain
data producing instruction has been executed and wherein
the instruction synchronization circuit delays the particular
data consuming instruction only:

i) when the prediction associated with the data consuming

instruction is within a predetermined range; and

iiy when the particular data consuming instruction is in the
prediction table; and

iii) when the flag indicates the particular data producing

instruction has not been executed.

6. The data speculation decision circuit of claim 2 wherein
the instruction synchronization circuit creates an entry in the
synchronization table including the particular data consum-
ing instructions and data producing instructions and the flag
value only after a mis-speculation indication is received for
the particular data consuming instruction and the particular
data producing instruction.

10

16

7. The data speculation decision circuit of claim 5 wherein
when the flag indicates the particular data producing instruc-
tion has been executed. the imstruction synchronization
circuit removes the entry from the synchronization table.

8. The data speculation decision circuit of claim 1 wherein
the prediction produces the mis-speculation indication by
tallying the mis-speculation indications for a data consum-
ing instruction.

9. In a processor capable of executing program instruc-
tions in an execution order differing from the program order
of the instructions, the processor further having a data
speculation circuit for detecting data dependence between
instructions and detecting a mis-speculation where a data
consuming instruction dependent for its data on a data
producing instruction of earlier program order. is in fact
executed before the data producing instruction. a data specu-
lation decision circuit comprising:

a) a prediction table communicating with the data specu-
lation circuit to create an entry listing a particular data
consuming instruction and data producing instruction
each associated with a prediction when a mis-
speculation indication is received; and

b) an instruction synchronization circuit only instructing
a processor to delay a later execution of the particular
data consuming instruction if the prediction table
includes an entry.

* Ok x k%

